Interpolation, Maximal Operators, and the Hilbert Transform
نویسنده
چکیده
Real-variable methods are used to prove the Marcinkiewicz Interpolation Theorem, boundedness of the dyadic and Hardy-Littlewood maximal operators, and the Calderón-Zygmund Covering Lemma. The Hilbert transform is defined, and its boundedness is investigated. All results lead to a final theorem on the pointwise convergence of the truncated Hilbert transform
منابع مشابه
A Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators
In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملWeighted Estimates for Bilinear Fractional Integral Operators and Their Commutators
In this paper we will prove several weighted estimates for bilinear fractional integral operators and their commutators with BMO functions. We also prove maximal function control theorem for these operators, that is, we prove the weighted Lp norm is bounded by the weighted Lp norm of a natural maximal operator when the weight belongs to A∞. As a corollary we are able to obtain new weighted esti...
متن کاملPseudodifferential Operators with Rough Symbols
In this work, we develop L boundedness theory for pseudodifferential operators with rough (not even continuous in general) symbols in the x variable. Moreover, the B(L) operator norms are estimated explicitly in terms of scale invariant quantities involving the symbols. All the estimates are shown to be sharp with respect to the required smoothness in the ξ variable. As a corollary, we obtain L...
متن کاملDirectional Operators and Mixed Norms
We present a survey of mixed norm inequalities for several directional operators, namely, directional Hardy-Littlewood maximal functions and Hilbert transforms (both appearing in the method of rotations of Calderón and Zygmund), X-ray transforms, and directional fractional operators related to Riesz type potentials with variable kernel. In dimensions higher than two several interesting question...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010